Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices: Application of a Bivariate Kalman Filter

نویسندگان

  • Catherine S. Forbes
  • Gael M. Martin
  • Jill Wright
چکیده

In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid Markov Chain Monte Carlo sampling algorithm. Candidate draws for the unobserved volatilities are obtained by applying the Kalman filter and smoother to a linearization of a state-space representation of the model. The method is illustrated using the Heston (1993) stochastic volatility model applied to Australian News Corporation spot and option price data. Alternative models nested in the Heston framework are ranked via Bayes Factors and via fit, predictive and hedging performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices: Application of a Bivariate Kalman Filter

In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid Markov Chain Monte Carlo sampling algorithm. Candidate draws for the unobserved volatilities are obtained ...

متن کامل

Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter∗

In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a Markov Chain Monte Carlo sampling algorithm. Candidate draws for the unobserved volatilities are obtained in bloc...

متن کامل

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices

In this paper we apply Bayesian methods to estimate a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Implicit posterior densities for the parameters of the volatility model, for the latent volatilities and for the market price of volatility risk are produced. The method involves augmenting the data generating process associated wit...

متن کامل

Multivariate Stochastic Volatility with Bayesian Dynamic Linear Models

This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount...

متن کامل

Pricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process

Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002